Search results for " Polyphosphate"

showing 10 items of 18 documents

Transformation of Construction Cement to a Self-Healing Hybrid Binder

2019

A new biomimetic strategy to im prove the self-healing properties of Portland cement is presented that is based on the application of the biogenic inorganic polymer polyphosphate (polyP), which is used as a cement admixture. The data show that synthetic linear polyp, with an average chain length of 40, as well as natural long-chain polyP isolated from soil bacteria, has the ability to support self-healing of this construction material. Furthermore, polyP, used as a water-soluble Na-salt, is subject to Na+/Ca2+ exchange by the Ca2+ from the cement, resulting in the formation of a water-rich coacervate when added to the cement surface, especially to the surface of bacteria-containing cement/c…

0211 other engineering and technologies02 engineering and technologylaw.inventionlcsh:Chemistrychemistry.chemical_compoundBiomimetic MaterialsPolyphosphateslaw021105 building & constructionComposite materiallcsh:QH301-705.5SpectroscopycoacervateCoacervatesoil bacteriaGeneral Medicine021001 nanoscience & nanotechnology6. Clean waterComputer Science Applicationsmicrocapsulessurgical procedures operative0210 nano-technologyinorganic polyphosphateManufactured MaterialsPortland cementMaterials scienceArticleCatalysisInorganic Chemistryotorhinolaryngologic diseasesself-healingPhysical and Theoretical ChemistryMolecular BiologyCementSoil bacteriaInorganic polymerConstruction MaterialsSpectrum AnalysisPolyphosphateOrganic ChemistryWaterModels Theoreticaldigestive system diseasesPortland cementlcsh:Biology (General)lcsh:QD1-999chemistrySelf-healingMicroscopy Electron ScanningHardening (metallurgy)concretemicrocracksInternational Journal of Molecular Sciences
researchProduct

Morphogenetically-Active Barrier Membrane for Guided Bone Regeneration, Based on Amorphous Polyphosphate

2017

We describe a novel regeneratively-active barrier membrane which consists of a durable electrospun poly(ε-caprolactone) (PCL) net covered with a morphogenetically-active biohybrid material composed of collagen and inorganic polyphosphate (polyP). The patch-like fibrous collagen structures are decorated with small amorphous polyP nanoparticles (50 nm) formed by precipitation of this energy-rich and enzyme-degradable (alkaline phosphatase) polymer in the presence of calcium ions. The fabricated PCL-polyP/collagen hybrid mats are characterized by advantageous biomechanical properties, such as enhanced flexibility and stretchability with almost unaltered tensile strength of the PCL net. The pol…

0301 basic medicineBone Regenerationcollagen-inducingBarrier membranePolymersPharmaceutical Science02 engineering and technologyMatrix (biology)chemistry.chemical_compoundMiceOsteogenesisPolyphosphatesDrug Discoverystromal cell-derived factor-1Pharmacology Toxicology and Pharmaceutics (miscellaneous)MC3T3-E1 cellsChemistrybiologizationAnatomy3T3 Cells021001 nanoscience & nanotechnology3. Good healthMembranetensile strength/resistanceAlkaline phosphataseCollagen0210 nano-technologyinorganic polyphosphateSurface PropertiesPolyestersArticleAngiopoietin-203 medical and health sciencesCalcification PhysiologicAnimalsHumansBone regenerationTissue EngineeringPolyphosphateMesenchymal stem cellMembrane ProteinsMembranes ArtificialMesenchymal Stem Cellspolypropylene mesh030104 developmental biologyGene Expression RegulationBiophysicsbiologization; hernia repair; inorganic polyphosphate; collagen-inducing; polypropylene mesh; tensile strength/resistance; stromal cell-derived factor-1; MC3T3-E1 cellsNanoparticlesWound healinghernia repairMarine Drugs
researchProduct

Amorphous, Smart, and Bioinspired Polyphosphate Nano/Microparticles: A Biomaterial for Regeneration and Repair of Osteo-Articular Impairments In-Situ

2018

Using femur explants from mice as an in vitro model, we investigated the effect of the physiological polymer, inorganic polyphosphate (polyP), on differentiation of the cells of the bone marrow in their natural microenvironment into the osteogenic and chondrogenic lineages. In the form of amorphous Ca-polyP nano/microparticles, polyP retains its function to act as both an intra- and extracellular metabolic fuel and a stimulus eliciting morphogenetic signals. The method for synthesis of the nano/microparticles with the polyanionic polyP also allowed the fabrication of hybrid particles with the bisphosphonate zoledronic acid, a drug used in therapy of bone metastases in cancer patients. The r…

0301 basic medicineBone Regenerationlong bone defects; bone marrow cells; inorganic polyphosphate; microparticles; bisphosphonates; <i>Runx2</i>; <i>Sox9</i>; cathepsin-K; tumor metastases; human mesenchymal stem cellsmedicine.medical_treatmentBiocompatible MaterialsCore Binding Factor Alpha 1 SubunitZoledronic Acidlcsh:ChemistryMiceRunx2OsteogenesisPolyphosphatesFemurlcsh:QH301-705.5tumor metastasesSpectroscopymicroparticlescathepsin-KDiphosphonatesTissue ScaffoldsChemistryImidazolesBiomaterialSOX9 Transcription FactorGeneral MedicineUp-RegulationComputer Science ApplicationsCell biologyRUNX2medicine.anatomical_structureinorganic polyphosphateChondrogenesisSox9medicine.drugArticleCatalysisChondrocyteInorganic Chemistryhuman mesenchymal stem cells03 medical and health sciencesOsteoclastmedicineAnimalsHumansPhysical and Theoretical Chemistrybone marrow cellsbisphosphonatesMolecular BiologyOrganic ChemistryMesenchymal stem cellMesenchymal Stem CellsBisphosphonateRatslong bone defects030104 developmental biologyZoledronic acidlcsh:Biology (General)lcsh:QD1-999Gene Expression RegulationNanoparticlesBone marrowInternational Journal of Molecular Sciences
researchProduct

Calcium Polyphosphate Nanoparticles Act as an Effective Inorganic Phosphate Source during Osteogenic Differentiation of Human Mesenchymal Stem Cells

2019

The ability of bone-marrow-derived mesenchymal stem/stromal cells (BM-MSCs) to differentiate into osteoblasts makes them the ideal candidate for cell-based therapies targeting bone-diseases. Polyphosphate (polyP) is increasingly being studied as a potential inorganic source of phosphate for extracellular matrix mineralisation. The aim of this study is to investigate whether polyP can effectively be used as a phosphate source during the in vitro osteogenic differentiation of human BM-MSCs. Human BM-MSCs are cultivated under osteogenic conditions for 28 days with phosphate provided in the form of organic &beta

0301 basic medicineCalcium PhosphatesCellCell Culture Techniques02 engineering and technologyExtracellular matrixlcsh:Chemistrychemistry.chemical_compoundOsteogenesisPolyphosphateslcsh:QH301-705.5SpectroscopyCells CulturedCell DifferentiationGeneral Medicine021001 nanoscience & nanotechnologyComputer Science ApplicationsCell biologymedicine.anatomical_structureGlycerophosphatesAlkaline phosphatase0210 nano-technologyinorganic polyphosphateStromal cellchemistry.chemical_elementosteogenic differentiationCalciumCatalysisArticleInorganic Chemistry03 medical and health sciencesmedicineHumansPhysical and Theoretical ChemistryMolecular Biologymesenchymal stem cellsPolyphosphateOrganic ChemistryMesenchymal stem cellβ-glycerolphosphateCa-polyphosphate nanoparticlesPhosphateAlkaline Phosphatase030104 developmental biologychemistrylcsh:Biology (General)lcsh:QD1-999Gene Expression RegulationNanoparticlesCalciumInternational Journal of Molecular Sciences
researchProduct

A Novel Biomimetic Approach to Repair Enamel Cracks/Carious Damages and to Reseal Dentinal Tubules by Amorphous Polyphosphate.

2017

Based on natural principles, we developed a novel toothpaste, containing morphogenetically active amorphous calcium polyphosphate (polyP) microparticles which are enriched with retinyl acetate (“a-polyP/RA-MP”). The spherical microparticles (average size, 550 ± 120 nm), prepared by co-precipitating soluble Na-polyP with calcium chloride and supplemented with retinyl acetate, were incorporated into a base toothpaste at a final concentration of 1% or 10%. The “a-polyP/RA-MP” ingredient significantly enhanced the stimulatory effect of the toothpaste on the growth of human mesenchymal stem cells (MSC). This increase was paralleled by an upregulation of the MSC marker genes for osteoblast differ…

0301 basic medicineMaterials sciencebusiness.product_categoryPolymers and Plasticsenamel cracks/fissuresamorphous polyphosphate microparticles; retinyl acetate; enamel cracks/fissures; Streptococcus mutans; human mesenchymal stem cells; collagen type I; alkaline phosphatasecollagen type IRetinyl acetateArticleStreptococcus mutans03 medical and health scienceschemistry.chemical_compoundhuman mesenchymal stem cells0302 clinical medicinestomatognathic systemDentinmedicineToothpasteretinyl acetateEnamel paintbiologyamorphous polyphosphate microparticles030206 dentistryGeneral ChemistryPeriodontiumTooth enamelbiology.organism_classificationMolecular biologyStreptococcus mutansstomatognathic diseases030104 developmental biologymedicine.anatomical_structureDentinal Tubulechemistryvisual_artvisual_art.visual_art_mediumbusinessalkaline phosphatasebiomaterialsPolymers
researchProduct

Role of ATP during the initiation of microvascularization: acceleration of an autocrine sensing mechanism facilitating chemotaxis by inorganic polyph…

2018

The in vitro tube formation assay with human umbilical vein endothelial cells (HUVEC) was applied to identify the extra- and intracellular sources of metabolic energy/ATP required for cell migration during the initial stage of microvascularization. Extracellularly, the physiological energy-rich polymer, inorganic polyphosphate (polyP), applied as biomimetic amorphous calcium polyP microparticles (Ca-polyP-MP), is functioning as a substrate for ATP generation most likely via the combined action of the alkaline phosphatase (ALP) and the adenylate kinase (AK). The linear Ca-polyP-MP with a size of 40 phosphate units, close to the polyP in the acidocalcisomes in the blood platelets, were found …

0301 basic medicineOligomycinAdenylate kinaseNeovascularization PhysiologicBiochemistry03 medical and health scienceschemistry.chemical_compound0302 clinical medicineAdenosine TriphosphateX-Ray DiffractionPolyphosphatesSpectroscopy Fourier Transform InfraredExtracellularHuman Umbilical Vein Endothelial CellsHumansGlycolysisMolecular BiologyTube formationATP synthasebiologyChemistryApyraseAdenylate Kinase (AK) ; Alkaline Phosphatase (ALP) ; ATP ; F0F1-ATP synthase ; inorganic polyphosphate ; microvascularization ; tube formation ; Human Umbilical Vein Endothelial Cells (HUVEC) ; nano/microparticles ; chemotaxis ; autocrine sensing.ChemotaxisCell BiologyCell biologyAutocrine Communication030104 developmental biology030220 oncology & carcinogenesisMicrovesselsbiology.proteinIntracellular
researchProduct

Restoration of Impaired Metabolic Energy Balance (ATP Pool) and Tube Formation Potential of Endothelial Cells under “high glucose”, Diabetic Conditio…

2017

Micro-vascularization is a fast, energy-dependent process that is compromised by elevated glucose concentrations such as in diabetes mellitus disease. Here, we studied the effect of the physiological bioinorganic polymer, polyphosphate (polyP), on the reduced ATP content and impaired function of endothelial cells cultivated under "high glucose" (35 mM diabetes mellitus conditions) concentrations. This high-energy biopolymer has been shown to provide a source of metabolic energy, stored in its phosphoanhydride bonds. We show that exposure of human umbilical vein endothelial cells (HUVEC cells) to "high glucose" levels results in reduced cell viability, increased apoptotic cell death, and a d…

0301 basic medicinemedicine.medical_specialtyPolymers and PlasticsCelltube formationATP poolUmbilical veinArticlelcsh:QD241-44103 medical and health sciencesHUVEClcsh:Organic chemistryDiabetes mellitusInternal medicinemedicineViability assayglucoseTube formationdiabetesChemistryapoptosispolyphosphateGeneral Chemistrymedicine.diseaseIn vitroendothelial cellsATP pool; diabetes; tube formation; apoptosis; glucose; polyphosphate; endothelial cells; HUVEC030104 developmental biologyEndocrinologymedicine.anatomical_structureBiochemistryApoptosisIntracellularPolymers; Volume 9; Issue 11; Pages: 575
researchProduct

SHIP2: A “NEW” Insulin Pathway Target for Aging Research

2014

Strong evidence suggests that systemic inflammation and central adiposity contribute to and perpetuate metabolic syndrome. All of these alterations predispose individuals to type 2 diabetes mellitus (T2DM), cardiovascular disease, as well as Alzheimer's disease (AD), all characterized by chronic inflammatory status. On the other hand, extensive abnormalities in insulin and insulin-like growth factor I (IGF-I) and IGF-II signaling mechanisms in brains with AD have been demonstrated, suggesting that AD could be a third form of diabetes. The Src homology domain-containing inositol 5-phosphatase 2 (SHIP2) has an important role in the insulin pathway because its over-expression causes impairment…

AdultAgingmedicine.medical_specialtymedicine.medical_treatmentDiseaseBiologySystemic inflammationPolymorphism Single Nucleotidepolymorphismchemistry.chemical_compounddomain-containing inositol 5-phosphatase 2 (SHIP2) insulin-like growth factor I (IGF-I) type 2 diabetes mellitus (T2DM)INFLAMMATIONGene FrequencyAlzheimer DiseaseDiabetes mellitusInternal medicinemedicineHumansInsulinSettore MED/05 - Patologia ClinicaSNPInositolAgedSettore MED/04 - Patologia GeneraleALZHEIMER’S DISEASEResearchInsulinInositol Polyphosphate 5-PhosphatasesNEURODEGENERATIONType 2 Diabetes Mellitusmedicine.diseasePhosphoric Monoester HydrolasesEndocrinologyDiabetes Mellitus Type 2chemistryImmunologySettore MED/26 - NeurologiaGeriatrics and Gerontologymedicine.symptomMetabolic syndromeSignal TransductionRejuvenation Research
researchProduct

Rebalancing β-Amyloid-Induced Decrease of ATP Level by Amorphous Nano/Micro Polyphosphate: Suppression of the Neurotoxic Effect of Amyloid β-Protein …

2017

Morbus Alzheimer neuropathology is characterized by an impaired energy homeostasis of brain tissue. We present an approach towards a potential therapy of Alzheimer disease based on the high-energy polymer inorganic polyphosphate (polyP), which physiologically occurs both in the extracellular and in the intracellular space. Rat pheochromocytoma (PC) 12 cells, as well as rat primary cortical neurons were exposed to the Alzheimer peptide Aβ25-35. They were incubated in vitro with polyphosphate (polyP); ortho-phosphate was used as a control. The polymer remained as Na+ salt; or complexed in a stoichiometric ratio to Ca2+ (Na-polyP[Ca2+]); or was processed as amorphous Ca-polyP microparticles (C…

Calcium Phosphates0301 basic medicineIntracellular SpacePeptidelcsh:Chemistrychemistry.chemical_compoundAdenosine TriphosphateX-Ray DiffractionPolyphosphatesSpectroscopy Fourier Transform Infraredprimary rat cortex neuronslcsh:QH301-705.5SpectroscopyCerebral CortexNeuronschemistry.chemical_classificationmicroparticlesChemistryβ-amyloidGeneral Medicinepathological conditions signs and symptomsComputer Science Applicationsneurotoxic effectsurgical procedures operativeBiochemistryAlzheimer's diseaseIntracellularCell Survivalβ-amyloid; calcium polyphosphate; microparticles; neurotoxic effect; adenosine triphosphate level; PC12 cells; primary rat cortex neuronsArticleCatalysisInorganic Chemistry03 medical and health sciencesmedicineExtracellularotorhinolaryngologic diseasesAnimalsPhysical and Theoretical ChemistryMolecular BiologyneoplasmsAmyloid beta-PeptidesPolyphosphateOrganic ChemistryNeurotoxicityPC12 cellsmedicine.diseaseIn vitrodigestive system diseasesRats030104 developmental biologylcsh:Biology (General)lcsh:QD1-999BiophysicsNanoparticlesAdenosine triphosphatecalcium polyphosphateadenosine triphosphate levelInternational Journal of Molecular Sciences
researchProduct

The Understanding of the Metazoan Skeletal System, Based on the Initial Discoveries with Siliceous and Calcareous Sponges

2017

Initiated by studies on the mechanism of formation of the skeletons of the evolutionary oldest still extant multicellular animals, the sponges (phylum Porifera) have provided new insights into the mechanism of formation of the Ca-phosphate/hydroxyapatite skeleton of vertebrate bone. Studies on the formation of the biomineral skeleton of sponges revealed that both the formation of the inorganic siliceous skeletons (sponges of the class of Hexactinellida and Demospongiae) and of the calcareous skeletons (class of Calcarea) is mediated by enzymes (silicatein: polymerization of biosilica; and carbonic anhydrase: deposition of Ca-carbonate). Detailed studies of the initial mineralization steps i…

Calcium Phosphates0301 basic medicineenzyme-mediated biomineral formationPolymerscarbonic anhydrasePharmaceutical ScienceMineralogyReviewBiologyMineralization (biology)Calcium Carbonateamorphous nanoparticles03 medical and health scienceschemistry.chemical_compoundPolyphosphatesCarbonic anhydraseDrug DiscoveryAnimalsHumansbone-hydroxyapatitebiosilicaPharmacology Toxicology and Pharmaceutics (miscellaneous)lcsh:QH301-705.5SkeletonCarbonic Anhydraseschemistry.chemical_classificationInorganic polymerPhylum PoriferaPolyphosphatePhosphatePoriferaDurapatite030104 developmental biologyEnzymechemistryBiochemistrylcsh:Biology (General)calcium carbonate bio-seedsbiology.proteinCalcareousalkaline phosphataseinorganic polyphosphateMarine Drugs
researchProduct